午夜一级久久_国产精品一区=区_亚洲一区二区毛片_国内精品视频在线观看

    預存
    Document
    當前位置:文庫百科 ? 文章詳情
    鋰電之父丨你不知道的Goodenough
    來源:科學10分鐘 時間:2022-05-23 12:28:03 瀏覽:3267次


    引言

    2019年10月9日,瑞典皇家科學院公布了2019年諾貝爾化學獎得主,他們分別是約翰·B·古迪納夫(John B·Goodenough)、M·斯坦利·威廷漢(M·Stanley·Whittingham)和吉野彰(Akira Yoshino),以表彰他們在鋰離子電池領域所做出的巨大貢獻(圖1)。這三位科學家分別來自美國、英國以及日本,在他們三人的共同努力之下,成功的將鋰離子電池推向市場,促進了如今智能手機、筆記本電腦、電動汽車等行業的快速發展。其中,Goodenough,這位“足夠好”先生,在鋰電領域可謂是“人人皆知”。

    圖1 2019年諾貝爾化學獎得主


    John Goodenough,美國得州大學奧斯汀分校機械工程系教授、固體物理學家,是鈷酸鋰、錳酸鋰和磷酸鐵鋰正極材料的發明人,鋰離子電池的奠基人之一,業界公認的鋰電之父

    作為迄今為止歷史上最年長的諾貝爾獎獲獎得主,Goodenough的一生可謂傳奇:

    1922年7月25日,John Goodenough出生于美國。

    1940年,John Goodenough從格羅頓學校(美國高中)畢業。

    1943年,John Goodenough在耶魯大學獲得數學系學士學位。

    二戰之后,John Goodenough于1952年在芝加哥大學獲得物理學博士學位。

    1952到1976年,John Goodenough在MIT的林肯實驗室工作,主要進行關于電腦內存的材料物理研究,并開始研究鈉硫電池。

    1976年,John Goodenough進入牛津大學任教授并作為無機化學研究負責人。在這里,John Goodenough從氧化物晶體結構出發,分析了固體物質能帶結構與電解液/電解質分子軌道的關系,結合固體物理與電化學知識精準地選擇了層狀氧化物LiCoO2作為鋰離子電池正極材料。LiCoO2材料以及這個材料體系中的各種衍生物直到今天仍然是各方面綜合性能最好、應用最為廣泛的鋰離子電池正極材料。現在正熱門的三元正極材料(比如用于Tesla汽車電池中的NCA,高鎳NMC等),依然是基于LiCoO2體系的摻雜(加入Ni,Al,Mn等)。

    1986年起,John Goodenough在德州大學奧斯丁分校擔任教授,繼續從事能源材料的研究。此后的1997年,這位75歲高齡的老教授又發現了自LiCoO2之后的又一極其優秀的正極材料體系——即以LiFePO4(LFP)為代表的磷酸鹽體系。

    2012年,John Goodenough開始研究固態電池,還有如何用更廉價易得的鈉來取代鋰。

    2019年,John Goodenough獲得2019諾貝爾獎化學獎,成為有史以來年齡最大的諾獎得主。

    ……

    老兵從未老去,只有奮斗的一生。截止目前,年近100的John Goodenough教授依然奮斗在科研一線,這種精神,值得我們敬佩與尊重。

    2022年,Goodenough教授即將走滿100周歲。為了紀念Goodenough老教授一生的工作貢獻,美國布魯克海文國家實驗室的Tranquada教授在Journal of The Electrochemical Society學術期刊上發表了題為《John Goodenough and the Many Lives of Transition-Metal Oxides》的文章,分析了Goodenough教授對于過渡金屬氧化物的深入研究,并總結了其關于過渡金屬氧化物獨特見解對相關領域發展的推動與促進作用。最后,作者總結了從Goodenough教授的成就上獲得的啟示。

    下面,筆者就帶領大家一起走進這篇文章,深入解析Goodenough教授及其與過渡金屬氧化物的前世今生!

    原文鏈接:https://iopscience.iop.org/article/10.1149/1945-7111/ac4895


    從尖晶石到巨磁阻

    1952,而立之年的Goodenough進入MIT林肯實驗室的一個研究團隊,該團隊的目標是改善早期電子計算機磁芯存儲器中使用的磁鐵。有研究表明,從鐵磁性過渡金屬合金轉變為鐵磁性過渡金屬氧化物是行之有效的方法。在此期間,Verwey和飛利浦研究中心的同事發表了許多關于各種尖晶石(一種晶體結構,包括已知最古老的磁性材料,如磁鐵礦Fe3O4等)的磁性性質和結構特性的研究結果,但都缺乏深入系統的理解。

    Goodenough作為一名理論物理學家,視角與眾不同。他充分分析了密排結構的簡單金屬的能帶和晶格畸變之間的聯系,因此選擇氧化物時,Goodenough把目光投向原子軌道,并考慮到了相鄰原子軌道之間的雜化。根據3d態的近似積分占用率,Goodenough直觀的對所選擇的過渡金屬氧化物的局部結構和電磁相互作用進行排序。在此過程中,他發現了一些有趣的現象,比如Cu2+更喜歡O鄰接的平面正方形構型,而不是八面體配位,并且他的研究還涉及到著名的Jahn-Teller效應。

    Goodenough的研究極具啟發效果,以具有鈣鈦礦結構的磁性體系La1-xCaxMnO3為例,依據Goodenough的研究規律,既能簡單解釋未摻雜LaMnO3中Mn3+特有的反鐵磁順序,又能解釋Ca摻雜導致某些Mn4+存在時的鐵磁順序。隨后幾年,Kanamori用鄰近過渡金屬離子的特定3d軌道組合之間的相互作用解釋了超交換規則,這就是后來的Goodenough-Kanamori規則。

    雖然氧化物對磁性材料很重要,但在凝聚態物理中,人們對它的關注度卻很低,直到30年后發現了層狀鈣鈦礦銅(La2-xBaxCuO4)的高溫超導性。此后,隨著人們對錳的關注,研究發現鈣鈦礦體系La1-xCaxMnO3在向鐵磁相過渡時存在巨大的磁電阻(巨磁阻),其關鍵在于絕緣順磁相向金屬鐵磁相過渡的一級特性及其對磁場的敏感性。


    從反鐵磁性到大熱電

    反鐵磁有序的概念最早由Néel提出,NiO是最典型的例子之一,該金屬化合物也是Mott提出的具有強軌道內庫侖相互作用的物質之一,這種相互作用通常會阻礙電子跳躍并導致絕緣狀態。此后,Goodenough也研究了NiO,他和同事研究發現在LixNi1-xO中,當Li部分取代Ni時,磁性會發生什么變化。當x=0.5時,化合物為LiNiO2,假設O保持為-2價,Li為+1價,那么Ni就會出現+2價和+3價,分別對應3d8態和3d7態。并且,Goodenough還發現,當x>0.3時,摻雜會誘導其向具有鐵磁性的菱形晶體結構轉變。1989年,O的K邊緣的X射線吸收光譜測試證明了Goodenough的研究結論。

    鑒于在鋰離子摻雜和鋰摻雜導致的金屬離子變價問題的研究經驗,進入牛津大學后,Goodenough迅速轉向了對LiCoO2的研究,并將其應用于鋰離子電池正極。此前鋰電池都是設計成充滿電的狀態,正極材料不含鋰,負極必須含鋰。所以所有人都用鋰金屬作為負極,再用不含鋰的化合物作正極。電池生產出來就是“滿電”,也就是現在的一次性鋰電池。

    但如果用LiCoO2作為正極材料,電池生產出來是“無電”的狀態,需要先充電才能用。把Li從LiMO2(M為金屬原子)中拉出來,需要M3+向M4+轉變。這對于M = Ni來說是一個挑戰。然而,Goodenough已經洞悉了在另一個磁性系統La1-xSrxCoO3中Co的這種特殊狀態。他的研究從根本上改變了電池的設計思維和邏輯,為今后LiCoO2的商業化提供了基礎條件。

    此外,基于該研究結果,人們發現NaxCoO2(類LiCoO2結構)在低溫下具有與自旋熵相關的大熱電勢(熱電冷卻的先決條件),無形中拓展了該領域的發展。


    從莫特絕緣體到高溫超導體

    在氧化銅化合物中發現超導性對凝聚態物理學界來說是一個巨大的沖擊,畢竟此前物理學領域很少關注氧化物。1984年,Goodenough對La2CuO4和La2NiO4進行了研究分析,他認為,La2CuO4中每一個Cu2+的單孔應該在2d軌道上,并在每個CuO2平面內與4個O相鄰的2pσ軌道雜化。他還指出,在同一個d軌道中存在兩個電子將消耗大量的庫侖能量,這與Mott的想法不謀而合。

    相比之下,凝聚態理論研究主要集中在密度泛函理論(DFT)的能帶結構計算上;對La2CuO4的這種計算預測出它應該是一種具有不穩定性費米表面電荷密度波的金屬。與此同時,該結果吸引了另一位科學家的注意,該科學家曾首次證實MnO具有反鐵磁性。他認為,La2CuO4應該是一個在每個Cu位點上自旋S=1/2的反鐵磁絕緣體,且由庫倫能量確定最近鄰之間的超交換耦合。此后,反鐵磁有序很快被中子衍射確定,并且光譜學確定其光學間隙為2 eV。

    當載流子(空穴)摻雜到CuO2平面時,反鐵磁相關在局部依然存在,且人們普遍認為超導性與磁性密不可分。然而,關于銅酸鹽的超導性的解釋依然很淺顯。受Goodenough的工作啟發,科學家們一直在努力分析銅酸鹽的局部磁矩和混合價態,然而直到幾年前才出現了第一個在定性和定量上都與母絕緣體 La2CuO4的有序和無序相一致的全電子計算結果。為了取得進一步的進展,一些人轉向了量子計算:在一個簡單的CuO2層模型中,反鐵磁和摻雜空穴的運動現在已經可以用一個冷原子量子模擬器進行模擬了,相關的研究依然在進行。


    總結

    可以看到,Goodenough的貢獻已經影響了過渡金屬氧化物各種有趣性質的研究。從中我們至少可以收獲以下幾點:

    首先是研究人員如果具有不同領域的經驗,可以帶來豐富的創造力。在麻省理工學院林肯實驗室,Goodenough最初是一群固態化學家和工程師中的理論物理學家中的一員。在他們的職業生涯中,Goodenough常年保持與實驗人員密切合作,理論與實驗之間的有效聯系對于材料科學的快速發展至關重要。

    其次,在已建立的知識領域之間的邊界工作極具挑戰性,突破也往往來自于用新的眼光來看待具有挑戰性的問題。

    最后,我們發現過渡金屬氧化物具有很多非凡特性。即使是絕緣體,只要組分發生很小的變化,就可以變成具有巨大磁阻或高溫超導性的材料。受Goodenough對過渡金屬氧化物研究的啟發,未來關于過渡金屬氧化物特性的應用研究想必不會止步。

    最后的最后,提前祝Goodenough老教授百年生日快樂!


    參考文獻

    [1] J. M. Tranquada. John Goodenough and the Many Lives of Transition-Metal Oxides. 2022 J. Electrochem. Soc. 169, 010535. DOI: 10.1149/1945-7111/ac4895.


    評論 / 文明上網理性發言
    12條評論
    全部評論 / 我的評論
    最熱 /  最新
    全部 3小時前 四川
    文字是人類用符號記錄表達信息以傳之久遠的方式和工具。現代文字大多是記錄語言的工具。人類往往先有口頭的語言后產生書面文字,很多小語種,有語言但沒有文字。文字的不同體現了國家和民族的書面表達的方式和思維不同。文字使人類進入有歷史記錄的文明社會。
    點贊12
    回復
    全部
    查看更多評論
    相關文章

    Scientific Reports:年發文破2W,不是預警期刊啦,快來看看!

    2022-07-04

    催化二區好刊推薦丨發文量大、速度快、對國人友好!

    2021-07-01

    ACS Applied Materials & Interfaces:雖貴為1區期刊,但發文量大,對國人友好,值得試試!

    2021-07-01

    待遇豐厚丨日本東北大學李昊課題組誠招特聘助理教授/博士后(材料計算或機器學習方向)

    2022-07-04

    突發!復旦大學院長被教師持刀捅死,真的是“內卷”“非升即走”的錯?

    2021-06-19

    怎么評價Cell旗下首本材料新刊Matter?

    2022-07-04

    熱門文章/popular

    基礎理論丨一文了解XPS(概念、定性定量分析、分析方法、譜線結構)

    手把手教你用ChemDraw 畫化學結構式:基礎篇

    晶體結構可視化軟件 VESTA使用教程(下篇)

    【科研干貨】電化學表征:循環伏安法詳解(上)

    【科研干貨】電化學表征:循環伏安法詳解(下)

    電化學實驗基礎之電化學工作站篇 (二)三電極和兩電極體系的搭建 和測試

    微信掃碼分享文章
    午夜一级久久_国产精品一区=区_亚洲一区二区毛片_国内精品视频在线观看
    亚洲自拍偷拍网站| 91精品视频网| 欧美伊人久久久久久久久影院 | 五月天欧美精品| 丝袜脚交一区二区| 亚洲成av人影院在线观看网| 丝袜a∨在线一区二区三区不卡| 亚洲大片在线观看| 精品夜夜嗨av一区二区三区| 国产精品1区二区.| 成年人网站91| 欧美亚男人的天堂| 欧美变态tickle挠乳网站| 久久毛片高清国产| 亚洲蜜桃精久久久久久久| 亚洲国产成人av网| 久久99精品久久久久久| 成人动漫一区二区在线| 欧美色精品天天在线观看视频| 日韩欧美一二三区| 国产精品网友自拍| 天堂成人国产精品一区| 国产成人精品免费一区二区| 在线免费观看视频一区| 日韩欧美成人一区| 国产精品九色蝌蚪自拍| 日韩在线一二三区| 成人在线视频一区二区| 欧美精品在线观看播放| 中文字幕成人在线观看| 午夜视黄欧洲亚洲| 国产不卡视频一区二区三区| 欧美日韩成人在线一区| 国产精品人妖ts系列视频 | 精品国产一区二区三区忘忧草| 国产精品久久久久婷婷| 蜜臀av性久久久久蜜臀aⅴ四虎| 成人激情免费电影网址| 日韩一区二区在线观看视频播放| 国产精品私房写真福利视频| jizz一区二区| 欧美变态tickle挠乳网站| 一区二区三区在线视频观看 | 91视频在线观看| 精品国精品国产尤物美女| 亚洲午夜电影在线观看| av一本久道久久综合久久鬼色| 日韩欧美激情一区| 性感美女极品91精品| 99re这里只有精品视频首页| 久久精品人人做人人爽人人| 日韩电影在线一区二区| 在线观看欧美黄色| 亚洲欧美另类久久久精品 | 夜夜精品视频一区二区 | 亚洲va中文字幕| 91蜜桃婷婷狠狠久久综合9色| 久久精品人人做人人爽人人| 久久国产精品区| 欧美一级久久久| 奇米一区二区三区av| 51精品久久久久久久蜜臀| 亚洲综合偷拍欧美一区色| 91啪九色porn原创视频在线观看| 亚洲国产激情av| 成人免费观看男女羞羞视频| 欧美激情在线免费观看| 国产91丝袜在线18| 国产精品久久久久影院色老大| 福利一区福利二区| 国产精品成人免费| 一本久道久久综合中文字幕| 亚洲人成在线观看一区二区| 91蜜桃婷婷狠狠久久综合9色| 亚洲欧美一区二区三区极速播放| 91免费精品国自产拍在线不卡| 久久精品二区亚洲w码| 777xxx欧美| 裸体一区二区三区| 久久影院视频免费| 成人理论电影网| 亚洲精品乱码久久久久久| 欧美日韩成人综合| 精品午夜久久福利影院| 日本一区二区三区电影| 9i在线看片成人免费| 亚洲一区二区在线免费观看视频| 欧美日韩国产大片| 激情成人综合网| 国产精品国产三级国产a| 在线欧美日韩精品| 捆绑调教美女网站视频一区| 国产欧美日韩亚州综合 | 久久久五月婷婷| 91女厕偷拍女厕偷拍高清| 亚洲成年人影院| 精品sm在线观看| 色欧美日韩亚洲| 美国精品在线观看| 国产精品福利一区二区| 欧美久久久久中文字幕| 国产成人在线影院| 亚洲国产毛片aaaaa无费看| 日韩欧美电影一区| 欧美综合欧美视频| 国产精品一区免费视频| 亚洲五码中文字幕| 久久人人97超碰com| 欧美中文一区二区三区| 国产精品 欧美精品| 亚洲成人自拍偷拍| 中文字幕精品一区| 欧美岛国在线观看| 欧美视频在线观看一区| 国产一区在线观看视频| 丝袜亚洲另类欧美综合| 亚洲人成网站色在线观看| 久久久一区二区三区捆绑**| 欧美精品免费视频| 色哟哟国产精品| 成人精品鲁一区一区二区| 激情小说亚洲一区| 日产国产欧美视频一区精品| 亚洲一区二区成人在线观看| 中文字幕在线一区免费| 国产亚洲精品超碰| 精品国产亚洲在线| 91精品国产品国语在线不卡| 欧美少妇一区二区| 91黄色激情网站| 91网站黄www| av在线不卡免费看| 成人18视频日本| 99在线精品免费| 不卡在线观看av| av资源网一区| 成人国产精品免费网站| 国产精品一区二区在线看| 日本一道高清亚洲日美韩| 国产精品乱码妇女bbbb| 欧美精品一区二区三区蜜桃视频| 91精品国产手机| 欧美性感一类影片在线播放| 不卡一区二区三区四区| 韩日欧美一区二区三区| 国产一区二区看久久| 天天操天天干天天综合网| 亚洲女同一区二区| 国产精品成人免费| 国产亚洲精久久久久久| 精品国产不卡一区二区三区| 欧美一区二区视频在线观看2020| 成人免费看黄yyy456| 国产精品一卡二卡在线观看| 国产精品 日产精品 欧美精品| 久久超级碰视频| 久久爱www久久做| 久久精品国产99国产| 视频一区二区不卡| 日产国产欧美视频一区精品| 调教+趴+乳夹+国产+精品| 亚洲一卡二卡三卡四卡五卡| 国产精品视频线看| 亚洲精品日产精品乱码不卡| 一区二区三区日韩精品视频| 一区二区三区在线观看欧美| 亚洲黄色av一区| 免费欧美在线视频| 精品无码三级在线观看视频| 精品一区二区三区的国产在线播放| 日产国产欧美视频一区精品| 国产激情精品久久久第一区二区| 国产精品影视天天线| 99久久综合精品| 欧美视频在线一区二区三区| 欧美一区二区三区在线| 欧美一级二级在线观看| 久久久精品欧美丰满| 亚洲国产成人va在线观看天堂| 亚洲成av人影院| 国产白丝网站精品污在线入口| 国产a视频精品免费观看| 成人黄色在线视频| 欧美视频一区二| 欧美经典一区二区| 一区二区三区日韩精品| 日本免费在线视频不卡一不卡二| 亚洲精品国产第一综合99久久 | 日本不卡123| 国产精品77777竹菊影视小说| 成人av电影在线网| www亚洲一区| 亚洲精品亚洲人成人网| 天堂一区二区在线| 久久se这里有精品| 欧美美女直播网站| 久久精品亚洲一区二区三区浴池| 亚洲日本护士毛茸茸| 国产成人av福利| 欧美午夜电影网|
    +

    你好,很高興為您服務!

    發送